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Abstract. The case of an electron tunnelling through a parabolic repeller and acted upon
by a microwave electric field is presently treated taking account of dissipation. Dissipation is
introduced using a frictional force and the relevant quantum mechanics stems from an appropriate
Lagrangian capable of generating the dissipative force. Considerations are presented for deriving
a suitable continuity equation adapted to the dissipative processes involved. Starting with a
wavepacket as the particle’s initial state, expressions for the probability and current densities, as
well as the transmission coefficient, are derived. These are used to see the influence of friction,
frequency, amplitude and initial phase of the applied field on the tunnelling effect. Furthermore,
the localizing effect of friction is made visible on the reflected portion of the wavepacket, where
the main body of the probability resides.

1. Introduction

Elberfeld et al [1] presented the tunnelling of a wavepacket through an inverted parabolic
barrier under the influence of an oscillating field. There the evolution of the tunnelling
probability and the current were given in terms of the wavepacket’s energy in the absence
of the field, as well as the tunnelling probability for various field strengths.

The advent of epitaxial machines has made it feasible to produce in composite
semiconductor structures almost tailor-made potentials of minute extent. Thus, it is possible
to some degree that a barrier in the form of a parabolic repeller may be made available, but
the difficulty with this sort of potential lies in the extensive regions of repulsion, beyond
the central peak, which are not involved in the sort of potentials met in tunnelling devices.
Nevertheless, the motion of a particle under the combined influence of such a potential
together with an alternating driving electric field can be treated exactly, and this was done
in [1]. Exactly soluble models are useful as they can provide a good measure of the
reliability of numerical treatments and furthermore are expected to supply general insights,
which in this case relate to the evolution of the tunnelling phenomenon in the course of
time.

In the present work we retain the set-up with the parabolic barrier together with
the oscillating field and in addition include dissipation. This is done in some sort of
phenomenological way, whereby we begin with a classical Lagrangian able to generate
a frictional force in the classical equations of motion, see Havas [2], and then proceed
quantizing in the style of Feynman, see Feynman and Hibbs [3]. Historically, the form of
a Hamiltonian incorporating a frictional force proportional to the particle’s velocity is due
to Kanai [4], and goes back as far as 1948. The frictional force provides the means by
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which our particle loses energy to the environment during its motion. Unlike other ways
of treating phenomenological dissipation, for example introducing decaying amplitudes, the
probability of finding our particle anywhere remains constant at all times. Furthermore, the
conjugate operators we employ satisfy the proper commutation relations, and the continuity
equation is produced in a way which takes account of the dissipative processes involved.
Objections to this sort of approach have been raised by Greenberger [5] and these are dealt
with in the next section.

In the literature one finds a considerable amount of work that follows the motion of a
wavepacket tunnelling through a barrier in the course of time [6]. Furthermore, tunnelling
under the influence of a time-dependent perturbation can be found in [7–11]. Some of
the references above involve a double barrier which under certain conditions is known
to exhibit high transparency. The transmission coefficient spectrum or, what is related to
it, the probability density in momentum representation under the oscillatory action of the
modulating field have been found to exhibit side bands, both for single and double barriers
[8–11]. In our case we have not been able to detect in the transmission coefficient more
than one peak. The same applies to the probability density in momentum representation,
but this is not included in the text. This lack is quite likely due to the extensive repulsive
range of the potential used, together with its smoothness that enables our particle to acquire
a continuous spectrum of energies. A definitive way to explain the absence of side bands
relies on the fact that the parabolic repeller does not split the impinging wavepacket into
a reflected and a transmitted one†. As a result the probability density in momentum space
possesses a single peak for a negative momentum at a given time. Further discussion is
presented in this respect in section 4. However, our work focuses on the effect of dissipation
on the tunnelling phenomenon and this can be treated in an exact fashion in the case of the
parabolic repeller.

In section 2 the propagator for our dissipating particle is derived and the evolving
wavefunction stemming from an initial wavepacket is obtained. In section 3 the probability
and current densities are given explicitly, as well as an expression for the transmission
coefficient suitable for considerations involving wavepackets. Finally, in section 4 numerical
results follow in which essentially the effect of dissipation, applied field and frequency on
tunnelling are shown. Profiles of the reflected portion of the probability density at a given
time demonstrate the localization effect of dissipation. In this section we discuss possible
sources able to deliver high enough oscillatory electric fields in relation to the strength of
the static potential. Suitable sources for the model in question are located in microwave
generators.

2. Wavepacket evolution

We begin with the classical Lagrangian of our problem

L = ekt [ 1
2mẋ

2+ 1
2m�

2x2+ eE(t)x] (2.1)

which when fed into Lagrange’s equations of motion supplies the following equation

mẍ = m�2x −mkẋ + eE(t). (2.2)

Clearly, (2.2) involves the frictional force−mkẋ, which is used to imitate a mechanism
of dissipation, for example transmission of energy into phonons. This sort of simulation
has also been employed to represent the process of loss in energy through radiation from

† I am grateful to the referee for drawing my attention to this peculiarity.
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an oscillating dipole. See for example Sargent IIIet al [12]. Evidently, the form of the
frictional force may differ from case to case, but our aim here is to consider this particular
form, and present the appropriate quantum mechanics for the tunnelling situation.

At this point we shall digress and discuss an objection raised with regard to a
quantum mechanical interpretation that arose when using Lagrangian (2.1) or the associated
Hamiltonian (3.3). Greenberger [5] looked at the form of the generalized momentum
p = mẋekt , given in (3.2), and concluded that the particle’s mass in the Kanai Hamiltonian
increases with time asmekt . The author has inferred this on the basis that the Lagrangian
in question takes the formTk − U , i.e. kinetic energy minus potential energy, which is not
presently the case. As Havas [2] pointed out, Helmholtz suggested that a Lagrangian need
not always be in the formTk −U . We point out that with this sort of Lagrangian, when no
potential forces are present the generalized momentum, is a constant of motion. Thus, the
exponential factor ekt provides the right factor for obtaining the correct expression for the
kinetic momentummẋ = e−ktp, the constantp now being the initial kinetic momentum.

With this sort of Hamiltonian, quantization is effected by replacing the generalized
momentum by the operator−ih̄∂/∂x, and the uncertainty principle remains intact. If,
however, one forms the commutator of the kinematic momentum and the position operators
this becomes e−kth̄/i, which tends to zero after a very long time. This, although unusual,
can be justified for friction, simulating the action of an almost macroscopic medium coupled
to the particle, makes the motion as time proceeds more and more predictable.

We now proceed to obtain the propagator associated with the Lagrangian (2.1). For this
purpose we need only know the classical path startingx ′ at t = 0 and reachingx at time t .
It is given by

Xc(τ) = e−kτ/2
{
x ′ cosh(�′τ)+ sinh(�′τ)

sinh(�′t)

[
xe−kt/2− x ′ cosh(�′t)

− e

m�′

∫ t

0
ekτ

′/2 sinh[�′(t − τ ′)]E(τ ′) dτ ′
]

+ e

m�′

∫ τ

0
ekτ

′/2 sinh[�′(τ − τ ′)]E(τ ′) dτ ′
}

(2.3)

where

�′ = [�2+ (k/2)2]1/2. (2.3a)

Introducing expression (2.3) into the action formula we obtain the action along the classical
path as

S(xt |x ′0) = mk

4
(x ′2− x2ekt )+ m�′

2 sinh(�′t)
[(x ′2+ x2ekt ) cosh(�′t)− 2x ′xekt/2]

+ e

m sinh(�′t)

∫ t

0
ekτ/2[xekt/2 sinh(�′τ)+ x ′ sinh(�′(t − τ))]E(τ) dτ

+φ(t) (2.4)

whereφ(t) is a function dependent on time and not on spatial coordinates. It is immaterial
in the calculation of probability and current densities, but for reasons of completeness we
give its expression

φ(t) = − e2

m�′ sinh(�′t)

∫ t

0
dτ
∫ τ

0
dτ ′ sinh(�′(t − τ)) sinh(�′τ ′)ek(τ+τ

′)/2E(τ)E(τ ′).

(2.4a)
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Since our Lagrangian is quadratic we can employ Van Vleck’s formula [13] for the
semiclassical propagator and obtain the corresponding propagator exactly, as

K(xt |x ′0) =
(

m�′

2π ih̄ sinh(�′t)
ekt/2

)1/2

exp

[
i

h̄
S(xt |x ′0)

]
. (2.5)

We previously employed the above procedure for obtaining the propagator of a damped
harmonic oscillator in the context of Brownian motion [14], and we could have derived
(2.5) replacing the oscillator frequency� by i�. We felt, however, that an independent
derivation, more suitable to the needs of the present work, would make the paper more
readable.

We, now, consider that the state our charged particle has been initially prepared to be
in the form of a wavepacket

8(x) = (2πσ 2)−1/4 exp

[
− 1

4σ 2
(x − x0)

2+ i

h̄
p0(x − x0)

]
. (2.6)

Such a state locates the particle, with a probability having a width ofσ , at positionx0, and
with an expected momentump0. x0 will be taken to be negative, i.e. the particle is initially
on the left of the barrier’s top.p0 may be taken as being positive, indicating an incoming
wave towards the top of the barrier, or negative for a receding wave.

The evolving wavefunction stemming from (2.6) is obtained using the propagator (2.5)
as

9(x, t) =
∫
K(xt |x ′0)8(x ′) dx ′. (2.7)

The integration overx ′ in (2.7) is most easily performed via the transformationx ′ −x0 = ξ ,
and we obtain

9(x, t) = 1

(2πσ 2)1/4

(
ekt/2

iG

)1/2

exp

[
i

h̄
S(xt |x00)− m�′ekt

2h̄G sinh(�′t)
(x −X0(t))

2+ i

h̄
φ(t)

]
(2.8)

whereG is a complex function of time given by

G = h̄

2m�′σ 2
sinh(�′t)− i

[
k

2�′
sinh(�′t)+ cosh(�t)

]
. (2.8a)

FurthermoreX0(t) in (2.8) is the classical path satisfying the initial conditionsX0(0) = x0

andmẊ(0) = p0, and is given by

X0(t) = e−kt/2
[
x0 cosh(�′t)+

(
p0

m�′
+ kx0

2�′

)
sinh(�′t)

+ e

m�′

∫ t

0
ekτ/2 sinh(�′(t − τ))E(τ) dτ

]
. (2.9)

It is worth noting that wavefunction (2.8) is at all times normalized to unity, which means
that our approach, while incorporating a flow of energy out of the system, does not violate
the principle of probability conservation.
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3. Probability and current densities

Once the particle’s wavefunction is made available the probability density at positionx and
time t is obtained as per usual from9∗9. Thus, utilizing (2.8) for the wavefunction the
required probability density is given by the expression

ρ(x, t) = 1

(2πσ 2|G|2e−kt )1/2
exp

[
− (x −X0(t))

2

2σ 2|G|2e−kt

]
. (3.1)

The conservation of probability becomes evident from (3.1). Furthermore, for this linear
problem the probability density reduces to a drifted Gaussian, about the particle’s classical
position, the spread of which is variable and equalsσ |G|e−kt/2. Examining this spread one
reaches the conclusion that dissipation helps to keep the probability of finding the particle
more localized.

The situation with the current density is not as straightforward as with the probability
density, and in order to proceed obtaining an expression for this quantity we need the
Hamiltonian associated with the Lagrangian (2.1). We begin with the generalized momentum

p = ∂L

∂ẋ
= mẋekt . (3.2)

The Hamiltonian then becomes

H = pẋ − L = e−kt
p2

2m
− ekt

[m
2
�2x2+ eE(t)x

]
. (3.3)

The Hamiltonian operator is constructed from (3.3) by replacingp by −ih̄∂/∂x. Thus,
Schr̈odinger’s equation takes the form

ih̄
∂

∂t
9 = −e−kt

∂2

∂x2
9 − ekt

[m
2
�2x2+ eE(t)x

]
9. (3.4)

Bopp [15] obtained a current density expression for the damped harmonic oscillator
using wavefunctions that had undergone a certain transformation. However, we can proceed
more generally and without having to have recourse to particular transformations pertaining
to the problem. Once conservation of probability has been established one can apply the
usual procedure of balancing the rate of change of the amount of probability enclosed in a
small region to the flow of probability through the encapsulating surface. Subsequent use
of Schr̈odinger’s equation (3.4) in conjunction with the divergence theorem provides the
equation of continuity from which we are led to an expression for the current density in the
form

J (x, t) = e−kt
h̄

m
Im

[
9∗(x, t)

∂

∂x
9(x, t)

]
. (3.5)

Formula (3.5) for the current density is valid irrespective of the potential forces, once the
dissipative force is of the form−mkẋ. This is so, for in the process of deriving (3.5) the
term involving the potential function on the RHS of (3.4) cancels out, but of course it is
used in the equation of motion for determining the wavefunction9(x, t).

For the particular case at hand we have

J (x, t) =
{

e−kt
1

m

∂S

∂x
+ �′

|G|2 sinh(�′t)

[
cosh(�′t)+ k

2�′
sinh(�′t)

]
(X0− x)

}
×ρ(x, t). (3.6)

Expression (3.6) for the current density reduces to the corresponding equation (43) in [1]
by removing dissipation, external field, and taking the particle initially still.
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The current density is very useful in problems of tunnelling, for its profiles at a given
time supply information about the local movements of the wave associated with the particle.
Furthermore, the pair of probability and current densities are equivalent to the wavefunction,
but the information they provide is more expressive.

For the purpose of diagnosing a tunnelling state of affairs energy is usually taken in
comparison with the barrier’s height. In dealing, however, with time-dependent forces and
moreover with dissipation, one cannot really talk about energy and in this case as a criterion
for tunnelling can be used that for which the classical particle starting from positionx0 and
with momentump0 must never surpass the location of the barrier’s top. Caution has to be
taken when extremely narrow wavepackets are used to represent the initial particle state.
However, even when all forces involved are conservative energy may not be sufficient to
provide the tunnelling condition. This is so, imagine a particle at some distance from the
position of the barrier’s top with an initial momentum that makes it recede from the barrier,
and a situation with just opposite momentum. In both cases the energy is the same, but in
the first instance we may have zero or definitely smaller tunnelling effects compared with
the second case. However, energy is important for incoming particles.

We wish, now, to discuss ways of calculating the transmission coefficient in the context
of time-dependent tunnelling. In an open system having one barrier the position of the top
of the barrier separates space into two regions, one with high probability of finding the
particle, and another with low probability. Naturally, the flow of probability through the
separation point takes place from the high to the low side. If tunnelling is the transport
mechanism the flow lasts over an extremely short space of time in the form of a pulse. The
situation with a closed system, for example a double well, with infinite walls, is completely
different, for the tunnelling mechanism transports the maximum excess of probability in
one of the wells onto the other and vice versa at a frequency of the order of the ratio of the
energy difference in the lowest two states over ¯h.

In what follows we shall focus our attention on what happens in the low probability side
(assumed to be the right-hand side) of an open system when an initial wavepacket state has
been prepared on the other side. Since, the flow of probability takes place in the form of a
pulse it is evident that the total amount of probability, transmitted, will not depend on the
choice of the passage point, provided we wait long enough. This realization is important,
for obtaining the transmission coefficient defined in [16] as the ratio of two probabilities
B/A, A being the initial probability of finding the particle on the high probability side and
B the net probability that has migrated onto the other side after a long time. It should be
noted that the pulse shape may change from one passage point to another. It is significant
to note that even with time-dependent forces in open systems the tunnelling pulse duration
is finite. Examples of this effect will be seen in computations which follow in the next
section. For the behaviour of migration probability in closed systems see [17].

The probability that has migrated through the passage atx1 up to timet is given by

B(t) =
∫ t

0
J (x1, τ )dτ =

∫ ∞
x1

[ρ(x, t)− ρ(x, 0)] dx. (3.7)

The equality of the last two members in (3.7) results from integrating the continuity equation.
It represents the balance between the probability that has been injected from time 0 tot

in the space fromx1 onwards and the excess probability that has been accumulated up to
time t . In accordance with our previous considerations, the transmission coefficient can be
obtained from (3.7) as

T = B(∞)∫ xm
−∞ ρ(x, 0) dx

(3.8)
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wherexm is the coordinate of the barrier top. While the expression for the transmission
coefficient (3.2) in [14] and (3.8) provide the same result, the difference being thatx1,
appearing inB(∞) in the present work, need not bexm, but any convenient point on the
barrier’s right.

At this moment we specialize in a driving electric field in the form

E(t) = E0 sin(ωt + ϕ). (3.9)

This sort of electric field results from polarized beams of coherent radiation. In the optical or
infrared regime such driving fields derive from appropriate lasers and for lower frequencies
from microwave generators. The particular range of frequencies and amplitudes depends
greatly on the ability of the external field to cooperate with the static potential. As far as the
external frequency is concerned it is effective in a region of�, which relates to the strength
of the static potential. Furthermore, for the amplitudeE0 to be able to exert an influence on
the particle’s motion it should have a size a few times tenfold the characteristic field dictated
by the model. This will become clearer when relevant numbers are considered in the next
section. It so happens that the required power of available sources in the high frequency
regime is excessively enormous for delivering sizeable fields. Perhaps free electron lasers
suit the purpose. However, the necessary conditions with low frequencies are easily fulfilled
using more conventional sources, namely microwave generators.

We now give a note concerning the use of (3.8). Generally, in practiceB(t) can
be calculated more easily from the integrated current density, than from the integrated
difference in the probability densities. The reason being that the probability density diffuses
very quickly and the corresponding integral is made out of an extremely small integrand
over an immense interval, while the current integral involves more manageable scales.

However, in the case of the inverted parabola, because of the Gaussian form of the
probability density (3.1), following [1, 18], we express the far RHS of (3.7) in terms of
error functions and we have

B(t) = 1

2

[
erf

( |x0|√
2σ

)
− erf

( |X0(t)|√
2σ |G|e−kt/2

)]
(3.10)

A = 1

2

[
1+ erf

( |x0|√
2σ

)]
. (3.11)

It should be noted that if the classical particle crosses over the barrier the minus sign between
the error functions in (3.10) becomes plus. Ast → ∞ the argument of the second error
function in (3.10) tends to a constant, sayZ0/(

√
2σ). This value is practically achieved just

after the tunnelling effect is complete, but the limiting value,Z0, can be obtained following
routine evaluations, and we just cite the result as

Z0 =
[(

h̄

2m�′σ 2

)2

+
(

1+ k

2�′

)2
]{(

1+ k

2�′

)
x0+ p0

m�′
+ eE0

m[(ω2+�2)+ (kω)2]

×
([(

1+ k

2�′

)
(ω2+�2)− kω

2

�′

]
sinϕ

+
[(

1+ k

2�′

)
kω + ω

�′
(ω2+�2)

]
cosϕ

)}
. (3.12)

Thus,B(∞) can be calculated from (3.13) as

B(∞) = 1

2

[
erf

( |x0|√
2σ

)
− erf

( |Z0|√
2σ

)]
. (3.13)

Furthermore,T can be obtained fromT = B(∞)/A, with A taken from (3.11).
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4. Numerical results

In this section we shall see the effect of varying the dissipation, external field amplitude,
frequency, and initial phase through the parametersk, E0, ω, andϕ on the probability and
current densities, and try to draw certain general conclusions. We shall form a picture of
the situation by considering, depending on the case, probability or current densities, as they
evolve in time at a given point, or as they extend in space at a given moment. Certainly,
the flow of tunnelling probability through a passage point in the form of a pulse of an
extremely short duration is general. We have already reached the result that the amount
of probability carried by the pulse does not depend on the position of the passage point,
although the shapes assumed by the pulses at two different points are not the same. We
shall, furthermore, verify the localizing effect scatterers have on the wavefunction. As far as
the particle is concerned the relevant parameters are its initial position,x0, and momentum,
p0, as well as the wavepacket’s initial spread,σ . In addition to the probability and current
densities, the transmission coefficient will be obtained, as this sort of information is generally
useful in studies of transport properties. In the cases considered, the classical particle with
positive p0 may execute the following motions. (i) The particle moves towards the top
of the barrier and is then reflected and proceeds to−∞ (pure tunnelling transport); (ii)
the particle surpasses the barrier top, oscillates about it and eventually returns to the LHS,
and (iii) the particle crosses over the barrier top and proceeds remaining on the RHS (pure
crossover transport).

To facilitate the numerical processing we introduce as units for time,Tu = �−1, energy,
Eu = h̄�, length, Lu = (h̄/m�)1/2, electric field, E0u = h̄�/eLu, and momentum,
Pu = mLu�.

The above system of units is quite flexible and can supply the implications deriving
from the model for a wide range of the parameters involved, once a certain parameter is
fixed. As such we select�, which characterizes the strength of the potential. Enhanced
phenomena are expected to occur at frequencies of the external field near�, and at high
electric field amplitudes, several times tenfold the unit of fieldE0u. However, the condition
of high electric fields puts a severe constraint on the available sources of coherent radiation
needed to produce the oscillatory field.

With the above in mind we have checked the suitability of infrared radiation from a
continuous wave laser, in view of their high-power output. However, simple calculations
based on the formula

E0 = (P/ε0c)
1/2 (4.1)

connecting the electric field amplitude with the output power intensityP (W cm−2) in
conjunction with the corresponding value ofE0u have led us to exclude this case. This on
account of the exceedingly high-power required, which even if realized the sample would
not have been able to withstand. We have accordingly gone down to lower frequencies, on
the order of GHz. Our calculations are based on a value for� = 2π GHz. This corresponds
to a wavelength of 30 cm and a unit of length in the device ofLu ≈ 0.513µm. The power
intensity required to generate an electric field amplitudeE0 ≈ 102E0u is 18 W cm−2.
Values of electric field amplitude of 100E0u are far beyond the region for tunnelling for low
applied frequencies, but are suitable for a tunnelling condition to apply for larger values ofω,
approximately above 1.6�. Thus, with an electric field amplitude, say 80E0u, and starting
to scan the frequency region from 0 to 3� tunnelling conditions prevail up to a certain
value ofω above which value the particle crosses the barrier over until another frequency
is reached when again the tunnelling requirement is restored for larger frequencies. For a
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certain region of the intermediate frequencies the classical particle goes beyond the barrier
top, but returns to the LHS oscillating a few times, depending on the frequency. The
microwave generators can be phase locked fairly well and can supply polarized radiation.
Adjustment of the initial phase,ϕ, of the incident radiation can be attained by displacing
the sample from the waveguide exit.

For a given high field amplitude,E0, it is the combination of the radiation frequency,ω,
the phase,ϕ, and the initial phase point(x0, p0), at which the particle is located by its initial
wavepacket state, that determines the particle’s classical path. As pointed out earlier, in the
case of time-dependent tunnelling the classical path can be used to diagnose prevalence of
tunnelling conditions. Certainly, if the particle, coming from left to right, surpasses in its
motion the location of the barrier top and continues travelling to the right we are away from
a required state of affairs for tunnelling. In contrast, the tunnelling prerequisite is realized
whenever the particle approaches or reaches the barrier top and returns moving backwards.
For a given high electric field amplitude and a given phase there may be regions of applied
frequency for which the condition for tunnelling is fulfilled and regions for which it is not.
We shall present diagrams not only relating to the pure tunnelling, but also to the above
hybrid situation.

Keeping all but one of the various parameters fixed we are able to surmise the following.
(i) Existence of tunnelling current even when the particle initially recedes from the

barrier. To demonstrate this we use the variation of current density pulses with initial
momentum, as depicted in figure 1. Tunnelling is essentially produced by the tendency of the
wavepacket to spread too fast. While the barrier reduces this effect to a considerable extent,
the particle’s momentum depending on its direction plays an enhancing or a diminishing
role.

(ii) The localizing effect of dissipation. In figure 2 we show two profiles of the
probability density at a given time, one fork = 0 and the other withk 6= 0. As expected,
dissipation makes the motion of the reflected packet slower.

(iii) Increase in friction results in a smaller tunnelling current as expected. See figure 3
which compares two current pulses corresponding to two different values ofk, while the

Figure 1. This figure shows that tunnelling may exist even for particles initially receding from
the barrier. Horizontal axis: time in units of�−1. Vertical axis: current density in units of
10−3�. The various parameters have been fixed as follows.k = 0, ϕ = 0, ω = �, electric
field amplitudeE0 = 20h̄�/eLu, initial particle’s positionx0 = −30Lu, current density taken
at x1 = 15Lu, initial spreadσ = 8Lu, and initial momentump0 for curves (a), (b), (c): 2, 0,
−2mLu� respectively.
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Figure 2. Probability density profiles att = 4�−1 in the high probability side, showing the
localizing effect of friction. Horizontal axis: negativex-axis in units ofLu. Vertical axis:
probability density in units of 5× 10−4Lu. Values of parameters as in figure 1, apart from
k = 3� for curve (a) andk = 0.5� for curve (b), andp0 = −2mLu� for both curves. Clearly,
friction causes localization and slows down the motion.

Figure 3. This figure shows a drop in tunnelling current when dissipation is increased.
Horizontal axis: time in units of�−1. Vertical axis: current density (atx1 = 15Lu) in units of
10−4�. In (a) k = 2� and in (b)k = 3�, while the other parameters remain the same as in
figure 2, apart fromp0 = 2mLu�.

rest of the parameters are kept fixed.
(iv) A small increase in the initial wavepacket spread results in a substantially higher

yield in the tunnelling current. This is demonstrated in figure 4 showing two current pulses
having the same parameters apart from the initial spread,σ , taken for two nearby values.

In view of the fact that a narrower initial wavepacket allows higher-energy
wavecomponents one may wonder why we are led to a diminished tunnelling current? But,
the decomposition of the spatial part of the initial wavepacket provides pairs of waves, one
with forward momentum and another with opposite momentum. The wavecomponent with
forward momentum enhances the tunnelling effect, while the other with opposite momentum
reduces the effect. The net result derives from the combination of all pairs of waves with
opposing momenta in conjunction with the mean momentum carrying plane wave. This is
depicted in the formulae for the probability and current densities.

We can visualize the enhancing action of increased initial spread by going to the limit
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Figure 4. This figure shows that a small increase in the initial wavepacket spread results in
substantially larger tunnelling current pulse of similar shape. Horizontal axis: time in units
of �−1. Vertical axis: current density (atx1 = 15Lu) in units of 10−8�. The values of the
various parameters are now:ω = 2�, ϕ = 0, k = 0.45�, E0 = 20h̄�/eLu, x0 = −40Lu,
p0 = 8mLu�, and the initial spread is correspondingly for curves (a), (b)σ = 5, 5.2Lu.

Figure 5. Shows that the transmission coefficient increases nonlinearly with increasing electric
field amplitude. Horizontal axis: electric field amplitude in units of ¯h�/eLu. Vertical axis:
transmission coefficient. In all curves the various parameters have values as follows.ϕ = 0,
x0 = −40Lu, p0 = 8mLu�, σ = 5Lu, k = 0.8�. In curves (a), (b), (c)ω = 0.5, 0.7, 1.2�
respectively. Examination of the classical paths for the values of the parametersϕ, x0, p0, σ ,
k as above and allω show that transmission is of a purely tunnelling origin for field amplitude
up to 66h̄�/eLu.

asσ → 0. In this case the probability density (3.1) goes over to

ρ(x, t)→ δ(x −X0(t)) (4.2)

which is the classical deterministic probability of finding our particle at timet . Such a
classical behaviour excludes tunnelling.

Furthermore, the current density (3.6) in the limit asσ → 0 takes the form

J (x, t)→ e−kt
1

m

∂S

∂x
δ(x −X0(t)) (4.3)

where theδ-function prefactor is the classical velocity acquired by the particle at timet if
it started fromx0 and reachedx in time t . This, in general, should be noted to differ from
Ẋ0(t). Clearly, on account of (4.3), the current density in the transmission region (beyond
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Figure 6. Transmission coefficient spectra for different electric field amplitudes. Horizontal axis:
frequency in units of�. Vertical axis: transmission coefficient. In all curves the parameters
ϕ, x0, p0, σ , k are fixed as in figure 5. For curves (a), (b), (c)E0 = 60, 66, 69.1h̄�/eLu
respectively. The value ofE0 in (b) is the largest possible of the associated classical paths
irrespective of frequency remain fully within the LHS of the barrier. Thus, spectra (a) and
(b) are of a purely tunnelling origin.E0 in (c) is the maximum value for which for allω the
classical particle eventually returns to the LHS. The portion of curve (c) betweenω = 0.55�
andω = 1.1� is associated with classical paths which enter the RHS, but eventually return to
the LHS.

Figure 7. This figure shows sensitivity of transmission spectra with initial phaseϕ. Horizontal
axis: frequency. Vertical axis: transmission coefficient. The parametersx0, p0, σ , k are fixed
as in figure 5 andE0 = 55h̄�/eLu. In (a) ϕ = 0, and the spectrum is of completely tunnelling
nature. In (b) a difference inϕ of 0.1π results in a hybrid spectrum consisting of purely
tunnelling branches belowω = 0.338� and aboveω = 0.84�, while the in between part of
the spectrum relates to paths that enter the RHS. In (c)ϕ = 0.3π . Here over a range of low
frequencies full transmission develops, and as the frequency increases the transmission spectrum
drops involving crossover processes, followed by barrier overtaking with eventual return to the
LHS, and finally forω > 0.95� the spectrum becomes of a purely tunnelling origin. In all
cases for large enough frequencies the barrier becomes practically opaque.

the barrier top) reduces to zero when the criterion for time-dependent quantum tunnelling
prevails.

(v) The tunnelling effect, as expressed through the transmission coefficient for a given
initial phase, increases nonlinearly with the electric field amplitude (see figure 5).

(vi) The transmission coefficient spectra, for fixedϕ, depend strongly on the applied
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field amplitude, as shown in figure 6. As long as the electric field,E0, lies below a certain
critical value,E0c, a purely tunnelling spectrum results.E0c depends onx0, p0, σ and k.
However, forE0 > E0c the transmission coefficient spectrum contains a portion around
its maximum of non-tunnelling origin (see figure 7). In all cases the spectrum contains
only one peak. In contrast to findings in [7–11] no side bands show up. Their absence
can be justified on account of the infinite extent of the static potential taken in conjunction
with its smoothness. Such a state of affairs allows the particle energy to vary continuously,
so that no discernible resonance relating to absorption or emission processes can develop.
However, as pointed out in section 1 the absence of side bands can be definitely attributed
to the inability of the parabolic barrier to produce a distinct wavepacket in the transmission
region. What actually enters the transmission region is just a portion of the RHS tail of
the Gaussian wavepacket lying mainly on the reflection side. Prevalence of such a state of
affairs excludes from the momentum probability density peaks centred at positive momenta,
indicative of side bands in the transmission spectrum.

(vii) The transmission coefficient spectra for a given electric field amplitude vary
sensitively with initial phase. See figure 7 which shows a purely tunnelling spectrum,
and two spectra of partially tunnelling nature.
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